Modeling Tools for Solid Oxide Fuel Cell Analysis

Moe A Khaleel

BJ Koeppel, VN Korolev, W Liu, KP Recknagle, EV Stephens, X Sun Pacific Northwest National Laboratory Richland, WA 93352

> 9th Annual SECA Workshop Pittsburgh, PA August 5-7, 2008

Motivation

- The SOFC is a complex system:
 - Multiple physical phenomena including fluid flow, electrochemistry, electric fields, thermal field, mechanical deformations, materials compatibility
 - Physical phenomena are tightly coupled (i.e. not independent)
 - High operating temperature range
- SOFC testing is very expensive:
 - Characterization of material properties, stability, and performance required
 - Stack fabrication, assembly, monitoring, and testing are time intensive
 - Only a minimal number of experimental tests can be done to validate long term technical performance targets (e.g. 10,000 hr)
- Modeling can be used for numerical design experiments:
 - Can simulate the multiple physical phenomena
 - Can be used repetitively to quickly evaluate the effects of design changes or explore the viable design space
 - Can be used in conjunction with testing to optimize performance
 - Can investigate long term behaviors

Objectives & Approach

Objectives

- Develop integrated modeling tools to:
 - Evaluate the tightly coupled multi-physical phenomena in SOFCs
 - Aid SOFC manufacturers with materials development
 - Allow SOFC manufacturers to numerically test changes in stack design to meet DOE technical targets
- Support industry teams use of modeling for SOFC development
- Provide technical basis for SOFC stack design

Approach

- Multiphysics-based analysis tools coupled with experimental validation:
 - <u>SOFC-MP</u>: A multi-physics solver for computing the coupled flow-thermalelectrochemical response of multi-cell SOFC stacks
 - Targeted modeling tools for specific cell design challenges:
 - Reliable sealing
 - Interface and coating durability
 - Thermal management of large stacks
 - Cathode contact paste durability
 - Collaboration with ORNL and ASME to establish a stack design approach based on modeling and experiments

SOFC-MP: Capabilities and Features

SOFC-MP Capabilities

- Coupled flow, EC, and thermal solutions
- Reduced order models for computational efficiency
- Contact of incompatible meshes
- Single or multi-cell models
- Generic fuel and oxidants
- Operation at assigned voltage, current, or fuel utilization
- Thermal and electrochemical results output for visualization

- Recent Improvements
 - Improved solution speed with use of AMG solver on PC
 - ~5hr for 8-cell stack model w/ 100k nodes and 200 solution iterations
 - Elimination of memory restrictions to solver larger problem sizes
 - Models w/ 100k nodes and 55k elements on PC w/ 4Gb memory
 - Port to Linux to take advantage of large shared memory
 - Improved energy balances with nonconformal meshes
 - Internal code restructuring to facilitate requested enhancements

SOFC-MP: Capabilities and Features (cont'd)

- SOFC-MP has the ability to compile and utilize subroutines to customize the solution
- User subroutines can be defined to include proprietary EC models
 - Generic I-V relationship can be coded to compute voltage as a function of partial pressures, temperature, current, etc.
- User subroutines can be use to control the flow resistance

 $\blacksquare \frac{dP}{dP} = RV$

dL

 Different interconnect media can be simulated

Oxidant Channel Flow Resistance

Resulting Oxidant Flow Field Temperature

SOFC-MP: Stack Modeling Examples

- Multi-cell 3D stacks using SOFC-MP
 - 6-cell: 360min for 76k nodes and 200 iterations
 - Stack ΔT: 160°C, Cell ΔT: 73-127°C
 - 7-cell: 18min for 88k nodes and 60 iterations
 - Faster due to low UF & different EC model
 - AMG solver: time/memory scales with # of cells

- 2D vertical stack slice model
 - Useful for co/counter-flow
 - Can be adjusted for cross-flow
 - Can handle internal reforming
 - Example: temperature profiles for various cells in 24-cell stack

Thermal Management: Internal Reforming

Temperature Difference for 20x20 cm Cross-Flow Stack

- Previous work demonstrated possible performance improvement by manipulation of the percent of reformation on-cell
 - Stack AT and component stress could be decreased depending upon methane content in fuel
 - Separate work manipulated heat transfer and heat distribution within stack to optimize the operating condition and performance
 - Both the improved conduction, and decreased air (and fuel) utilizations decreased the stack ∆T
- Present study is a continuation of the manipulated heat transfer work to further optimize stack performance including:

Pacific N

- Internal reforming
- Pressurization

Thermal Management: Pressurization

- Optimization of stack performance will also include the effect of pressurization:
 - The Nernst Potential correctly captures the pressure effect and requires no further examination
 - The Butler-Volmer equation describes the activation polarization η_{act} related to the current (*j*) and the exchange current density (*j*_o). For the SOFC it can be written as:

$$\eta_{act,e} = \frac{RT}{\alpha F} \sinh^{-1} \left(\frac{j}{2j_0} \right)$$

- Pederson's tests showed : $j_o = j_o (PO_2^{1/2})$
- The exchange current density model was improved by adding the pressure dependence, and applied to both electrodes as:

Thermal Management: Pressurization (cont'd)

Performance improvements:

- Increased Nernst potential
- Decreased activation polarization
- Increased cell voltage and electrical power -> decreased heat load
- Decreased Heat load leads to improved thermal performance

Tubular SOFC data (Siemens), 89% H₂, 3% H₂O, running at 1, 3, and 10 atm at constant 85% UF

 Electrochemistry model with improved activation polarization properly characterizes the performance improvements for planar and tubular cells operating at elevated pressures

Planar SOFC data (GE), 25% H₂, 3% H₂O, 72%

Seal Property Characterization

- Performed shear tests of refractory glass sealants at room and elevated temperatures
 - Compared to G18 glassceramic

- Results
 - Room temperature strength of refractory glass about 2/3 less
 - Elevated temperature strength comparable (~7% less)

Seal Property Characterization (cont'd)

- Performed creep experiments to quantify effect of aging on timedependent response
- Creep rate an order of magnitude less after 1000hr devitrification
- Short-term seal creep expected to accommodate high stresses initially, but much slower creep after aging

Secondary Creep Rate for Glass-Ceramic

Pacific No

Modeling of Different Seal Glasses

Pacific N

 Greatly different creep rates at 30 MPa applied stress

- UC glass: 1.0e-3/s at 1000°K
- G18 glass-ceramic: 1.0e-6/s at 973°K (700°C)

Modeling of Different Seal Glasses (cont'd)

- For G18 glass-ceramic sealant, maximum equivalent total strain and creep strain keep constant after the initial creep stage:
 - no overflow of the glass ceramic seal materials will occur during the operation of SOFC stacks
- For UC self-healing glass seal, maximum equivalent total strain and creep strain keeps increasing after one hour operation:
 - Overflow of seal glass will occur, control block of total creep deformation is necessary during the desired SOFC operating duration

Modeling of Different Seal Glasses (cont'd)

- Maximum equivalent von Mises stress, maximum σ_{11} , and σ_{33} , for the PEN seal with the different glass sealants, respectively
- Stress results for both sealants possess similar trends
 - von Mises stress is released rapidly, and
 - normal stress σ_{11} , and σ_{33} are constant after a small drop
- Time to release the shear/deviatoric stress for G18 is much longer than UC seal healing glass

Aging/Self-Healing Behavior of G18

Evolution of crystalline phase is time dependent

After sintering

After 1000 h aging

Glass/ceramic displays possible self-healing behavior at high temperature

Typical Vickers impression

at 750°C for half an hour

 Aging induced micro-voids in glass-ceramic

Aging/Self-Healing Behavior of G18 (cont'd)

- This model includes:
 - Aging-time-dependent crystalline content model for volume evolution of crystalline phases
 - Temperature dependency
 - Degradation of modulus of glass/ceramic due to aging induced micro-damage
 - Mechanical property restore due to self-healing performance at high temperature
- This model was applicable to general glass/ceramic materials

Pacific Nor

Contact Paste: Introduction

- The cathode contact layer is a highly challenging interface
 - Must make bond between ceramic cathode and metallic interconnect (likely with oxide scale and coatings)
 - Must survive oxidizing environment
 - Must likely be formed at temperatures lower than that of the conventional range for sintering of ceramics
- Modeling can aid understanding of load requirements and guide design improvements

Areas of interest for modeling and experiments:

- Quantification of expected interface stress levels
- Characterization of paste mechanical/strength properties
- Evaluation of the contact layer as a load carrying interface to reduce seal loads
- Evaluation of contact layer stresses and reliability due to low temperature processing methods

Contact Paste: Stress Levels

- Evaluated continuous paste support
 - High peeling stresses (35 MPa) and shear stresses (17 MPa) concentrated near the sealed edge of the cell at operating temperature
 - Even higher local peeling and shear stresses at shutdown
 - Cell scale-up from 10-30cm showed only moderate changes in peak stresses- dominated by edge effects
 - Sliding seals were more beneficial than rigid seals
 - Consideration of stack creep effects was beneficial for relaxing stresses
 - Higher stack sealing temperatures with rigid seals increased stresses in all the cell components

Contact Paste: Property Characterization

Joint collaboration between PNNL and ORNL

- Yanli Wang from ORNL visited PNNL to lwork on specimens fabrication
- Continued PNNL support to ORNL for fabrication of specimens

Experimental work in progress

- ORNL conducting notched specimen bend tests to determine interfacial toughness of fabricated analogs
- PNNL conducting tensile tests to determine interfacial strength of fabricated analogs
- Beginning with spinel-coated Crofer interconnect substrate material and LSM-10 contact paste; next step to test Ce-spinel coated 441SS and LSM-10 contact paste
- Preliminary interfacial tensile strengths at test temperatures ranging from RT to 850°C indicate 1-6 MPa

Tension test and bend bar schematic of LSM contact paste/spinel-coated IC interface

contact paste/spinel-coated IC interface

Contact Paste: Load Transfer

NATIONAL LABORATORY

Contact Paste: Load Transfer (cont'd)

- Seal load dependence on contact paste design was simulated
 - Co- versus cross-flow
 - Bonded versus sliding contact
 - Variation of paste modulus as a function of cathode modulus
 - Ribbed and continuous ICs
- Results
 - Bonded paste reduced seal shear load up to 10-20% compared to sliding interface
 - Paste modulus for bonded layer had only small effect (<5%) on seal load</p>
 - Implies low modulus sensitivity good for processing the porosity
 - Seal load varied greatly (~40%) with orientation relative to rib direction
 - Continuous IC evaluations still in progress

Conclusion: load sharing concept is viable, but not fully characterized yet

Modeling Goal

- Material and process for strong, reliable cathode contact
- Develop a model to predict the properties and stress state of the cathode contact layer including effects of:
 - Initial state/stresses due to the sintering/processing step
 - Mechanical stresses induced by any volumetric changes of the anode during reduction
 - Typical thermal stresses due to cell operation and shutdown

Technical Approach

- Implement constitutive model to predict the sintering strains and developed stresses
 - Evolution of relative density and grain size
 - Changes in elastic and strength properties as a function of relative density
- Extend the model to include the enhanced densification due to pO₂ cycling
- Test in spreadsheet model and then implement in stack models
- Evaluate structural reliability in realistic geometry

Contact Paste: Sintering (cont'd)

- Model captures densification behavior of LSM10 paste
 - Effect of pO₂ cycling and temperature changed observed in experimental tests is simulated
 - Model computes free densification strains, grain growth, and elastic property changes at different stages of sintering
 - Next implement spreadsheet model into 3D FEA tool for actual IC geometries

McCarthy BP, LR Pederson, HU Anderson, X-D Zhou, P Singh, GW Coffey, and ED Thomsen. 2007. *J Am Ceram Soc* 90(10):3255-3262.

Pacific No

Collaborations

- PNNL modeling staff are currently collaborating with SOFC researchers on several technical issues
- ASME design document
 - ORNL: E Lara-Curzio, Y Wang
 - ASME: J Powers, R Swayne
- Contact paste characterization
 - ORNL: E Lara-Curzio, Y Wang
 - PNNL: L Pederson, B McCarthy
- Interconnect coatings
 - PNNL: Z Yang
- SECA test cell
 - PNNL: J Stevenson, M Chou

- Modeling tool supportDelphi
- Seal characterization & modeling
 - U of Cincinnati: R Singh
 - GaTech: H Garmestani
 - PNNL: M Chou
- Chrome Migration
 - Carnegie Mellon: E Ryan
- Pressurized EC
 - PNNL: L Pederson

Conclusions & Ongoing Work

Conclusions

- Speed and capabilities of SOFC-MP were improved
- Cathode contact paste stresses were evaluated and a sintering model was developed
- An EC model to simulate pressurized SOFC was developed
- Seal mechanical properties continue to be characterized and modeling was used to evaluate novel sealants

Ongoing Work

- Completion of the SOFC design document
- Release of SOFC-MP v1.1
- Thermal management using coalbased fuels w/ methane and pressurization
- Characterization of contact paste mechanical strengths
- Simulation of contact paste development and cell load paths
- Improved interconnect coating systems

